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synopsis 

An efficient method for optimization of a formulation problem subject to nonlinear 
constraints was demonstrated. Specifically, a nine-variable polyester-filler system was 
investigated experimentally. The investigation included selection of an efficient ex- 
perimental design, regression analysis, and study of optimization methods. Recom- 
mended procedures are reported, along with examples and discussion of several typical 
applications. 

INTRODUCTION 

Fillers are often used in a resin to-modify properties and to reduce the 
cost. The fillers to be used for an application are selected frequently on 
the basis of prior practice, and a particular formulation is developed by 
successive experimentation. This is an expensive and inherently slow ap- 
proach that often hampers the development of a new product. Moreover, 
the selection of trial formulations depends entirely upon the judgment of 
the experimenter, which introduces additional delays. Finally, the data 
collected in the course of developing a formulation for one application is 
often not very useful in developing a formulation for another application. 

The exploratory development could be accelerated and made in a more 
general way if the problem were considered to be a constrained optimization 
problem. That is, the development could be accelerated if experiments 
were conducted to determine composition-property relations which could 
then be used as constraint equations in a formal search for the optimum 
formulation for each application of interest. A program typical of this 
approach consists of five steps. (1) experimental design, (2) data collection, 
(3) regression analyses of the data, (4) specification of constraints, and (5)  
constrained optimization. 

In  this work, the problem of formulating minimum-cost filler-polyester 
resin-styrene systems, subject to specified constraints on mechanical prop 
erties, w-BS used as an example of the constrained optimization approach to 
an exploratory formulation study. A general procedure was selected and 
used to determine the effects of various fillers on resin properties efficiently 
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and to optimize the composition subject to property constraints. Other 
types of variables, such as cure conditions or process variables, could have 
been included. The results of example optimizations are also discussed. 

EXPERIMENTAL DESIGN AND DATA COLLECTION 

Choice of the experimental design is a crucial step that involves selection 
of variables, selection of the statistical method to be used, and specification 
of the experimental region to be studied. Usually, variables are selected 
on the basis of qualitative or semiquantitative expectations. For example, 
if a range of resin properties is desired, a mixture of two compatible resins 
may be used, and resin composition is chosen as a variable. Once the 
variables have been selected, an experiment can be designed. To be most 
useful for exploratory work, the experiment must include as much of the 
region of interest as possible and must define the important effects ade- 
quately without becoming too costly. This can be very difficult and nor- 
mally requires some preliminary information if the experiment is to be d e  
signed well. 

The components selected for study in this work and the composition 
ranges used are listed in Table I. The six fillers selected vary widely in 
cost, particle size, and effect on mechanical properties, but all have been 
used as fillers in composites. The components of the resin (flexible poly- 
ester, rigid polyester, and added styrene monomer) were also varied so that 
the matrix properties could be varied. Since the volumetric fractions of 
the nine components must sum to unity, there are eight independent vari- 
ables. The particular components chosen are currently used commer- 
cially; therefore, compositions developed from the program to meet partic- 
ular performance criteria can be compared to those in use. 

The flexible resin used in this study was American Cyanamid EPX-279-1 
and the rigid resin used was EPX-187-3. All tests were made from one lot 

TABLE I 
Properties of the Components Used 

Mean Ranges 
Density, part.icle Cost, Cost, used, 

Component g/ml size, f i  #/lb b/liter vol-% 

1. Clay 
2. Marble 
3. Glass microballoons 
4. Saran microspheres 
5. Wollastonite 
6. Pecan shell flour 
7. Polyester resin- 

flexible 
8. Polyester Resin- 

rigid 
9. Styrene 

2.580 
2.710 
0.340 
0.032 
2.890 
1.300 

1.148 

1.335 
0.900 

4 . 5  1.97 
40.0 0.50 
62.0 69.00 
30.0 350.00 
30.0 1.85 

125.0 2.50 

- 26.80 

- 18.00 
- 11.50 

11.20 
3.00 

52.00 
26.30 
11.80 
7.16 

67.80 

56.50 
22.81 

1-25 
1-25 
1-25 
1.25 
1-25 
5-29 

58-80 

5-29 
5-29 
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of each resin. Additional styrene was added to this mixture as required by 
the designed experiment. A 6 wt-% cobalt naphthanate-dimethyl aniline- 
MEK peroxide catalyst system was used. The levels of the catalyst sys- 
tem components were set to give a gel time of 300 to 400 sec. The levels 
used for all tests were 0.14 wt-% cobalt naphthanate solution, 0.07 wt-% 
dimethyl aniline, and 1.0 wt-% MEK peroxide, based on the total resin, as 
received. The promoters were added to the resin-filler mixture and mixed. 
The catalyst was added and mixed for 40 sec, taking care to minimize air 
entrainment. The reacting mass was hand poured into cold RTV-Silastic 
rubber molds, and the gelled pieces were removed from the molds after 800 
sec. Before test- 
ing, the sample surfaces were sanded flat and parallel. The reproducibility 
of the mixing and cure procedures was checked by replicating several points. 
The final properties of the replicates were identical, within the limits of 
experimental errors involved in the property tests. 

For 
this system of eight independent variables, 28 = 256 or (2* + 2 X 8 + 1) = 
273 experiments would be required for a two-level factorial or rotatable 
central composite design, respectively. Aside from the fact that a two-level 
factorial does not develop second-order effects and that a rotatable design 
cannot be adapted easily to include most of the sample space in this type of 
problem, the experimental effort required is prohibitive for an exploratory 
study. The design chosen for thm problem is the simplex lattice design de- 
veloped by Scheffel and discussed by Biles2 in detail. 

The simplex lattice design is basically a polyhedral design with the 
variables forming the vertices. The design includes three types of experi- 
ments: (1) a vertex where one component is set at its maximum allowable 
level and all other variables are set a t  their minimum levels, (2) at  least one 
point spaced between each pair of vertices, and (3) the centroid of the poly- 
hedron. I n  general, the experiments required are given by the following 
equation : 

The pieces were postcured in an oven at  70°C for 20 hr. 

The next problem is to choose an appropriate experimental design. 

experiments = (q + m + l)!/(m + l ) ! (q)!  (1) 

where q = number of independent variables and m = number of points 
between two vertices. If only the midpoints brtween vertices are used 
(m = l), the number of experiments required by the design is 45 experi- 
ments plus the centroid, for a total of 46. This is one more experiment than 
the number of coefficients required for a complete quadratic expression of a 
response variable in eight independent variables. Therefore, this is the 
minimum number of experiments required to uniquely determine a function 
with one degree of freedom, a statistical minimum number of experiments. 
Thus, the required response functions can be developed from the simplex 
lattice design experiment with the least expenditure of time. Of course, 
the experimental responses must be measured accurately if an equation for 
the response is to be determined from a minimum number of experiments. 
Hopefully, some interaction (zp,) terms and some pure quadratic (z?) 
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terms will have zero coefficients, i.e., the terms will be unimportant. Each 
zero coefficient adds another degree of freedom. This will be discussed in 
more detail later. 

The 45 experimental compositions and the three replicated centroid 
compositions used in this designed experiment are given in coded form in 
Table 11. Test formulations were prepared according to the experimental 
design, cured, and tested as described in an earlier study3 for density, tensile 
strength, flexural strength, compressive strength, secant modulus, flexural 
modulus, and ultimate t,ensile elongation. Multiple tests were performed 
on each experimental formulation and the results averaged to determine 

TABLE I1 
Coded Values for an Eight-Variable, Augmented, 

Extreme Vertices, Simplex Lattice Experimental Design. 

Expt. 
no. XI X2 Xa X4 XS xs x, XS x9 

1 0  
2 -1 
3 -1 
4 -1 
5 -1 
6 -1 

7 -1 
8 -1 
9 -1 

10 -3 
11 -3 
12 -3 

13 -3 
14 -3 
15 -3 
16 -3 
17 -3 

18 -3 
19 -3 
20 -3 
21 -3 
22 -3 
23 -3 
24 -3 

25 -3 
26 -3 
27 -3 
28 -3 
29 -3 
30 -3 

-3 
-1 
-3 
-3 
-3 
-3 

-3  
-3 
-3 

0 
-1 
-1 

-1 
-1 
-1 
-1 
-1 

-3 
-3 
-3 
-3 
-3 
-3 
-3 

-3 
-3 
-3 
-3 
-3 
-3 

-3 
-3 
-1 
-3 
-3 
-3 

- 3  
-3 
-3 
-3 
-1 
-3 

-3 
-3 
-3 
-3 
-3 

0 
-1 
-1 
-1 
-1 
-1 
-1 

-3 
-3 
-3 
-3 
-3  
-3 

-3  
-3 
-3 
-1 
-3 
-3 

-3  
-3 
-3 
-3 
-3 
-1 

-3 
-3 
-3 
-3 
-3 

-3 
-1 
-3 
-3 
-3 
-3 
-3  

0 
-1 
-1 
-1 
-1 
-1 

-3 
-3 
-3 
-3 
- 1  
-3 

-3 
-3 
-3 
-3 
-3 
-3 

-1 
-3 
-3 
-3 
-3 

-3 
-3 
-1 
-3 
-3 
-3 
-3 

-3 
-1 
-3 
-3 
-3 
-3 

-2 
-2 
-2 
-2 
-2 
-0 .5  

-2 
-2  
-2 
-2  
-2 
-2  

-2  
-0.5 
-2  
-2  
-2 

-2  
-2  
-2  
-0 .5  
-2 
-2 
-2 

-2 
-2 
-0.5 
-2 
-2 
-2 

1 
1 
1 
1 
1 
1 

2 
1 
1 
1 
1 
1 

1 
1 
2 
1 
1 

1 
1 
1 
1 
2 
1 
1 

1 
1 
1 
2 
1 
1 

-2 -2 
-2 -2 
-2 -2 
-2  -2 
-2  -2 
-2  -2 

-2 -2 
-0.5 -2 
-2 -0.5 
-2 -2 
-2  -2  
-2  -2  

-2 -2 
-2 -2 
-2 -2 
-0.5 -2 
-2 -0 .5  

-2 -2 
-2 -2 
-2  -2  
-2  -2 
-2 -2 
-0 .5  -2  
-2  -0 .5  

-2  -2  
-2 -2 
-2 -2 
-2 - 2  
-0.5 -2 
-2 -0 .5  

(continued) 
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TABLE I1 (continued) 

no. XI Xz Xa Xc XS xs x7 XS X9 

Expt. 

31 -3 -3 -3 -3 0 -2 
32 -3 -3 -3 -3 -1 -0.5 
33 -3 -3 -3 -3 -1 -2 
34 -3 -3 -3 -3 -1 -2 
35 -3 -3 -3 -3 -1 -2 
36 -3 -3 -3 -3 -3 0.5 

37 -3 -3 -3 -3 -3 -0.5 
38 -3 -3 -3 -3 -3 -0.5 
39 7 3  -3 -3 -3 -3 -0.5 
40 -3 -3 -3 -3 -3 -2 
41 -3 -3 -3 -3 -3 -2 
42 -3 -3 -3 -3 -3 -2 

43 -3 -3 -3 -3 -3 -2 
44 -3 -3 -3 -3 -3 -2 
45 -3 -3 -3 -3 -3 -2 
46 -2.5 -2.5 -2.5 -2.5 -2.5 -1.5 
47 -2.5 -2.5 -2.5 -2.5 -2.5 -1.5 
48 -2.5 -2.5 -2.5 -2.5 -2.5 -1.5 

1 
1 
2 
1 
1 
1 

2 
1 
1 
2.5 
2 
2 

1 
1 
1 
1.5 
1.5 
1.5 

-2 -2 
-2 -2 
-2 -2 
-0.5 -2 
-2 -0 .5  
-2 -2 

-2 -2 
-0.5 -2 
-2 -0.5 
-2 -2 
-0.5 -2 
-2 -0.5 

0.5 -2 
-0 .5  -0.5 
-2 0.5 
-1.5 -1.5 
-1.5 -1.5 
-1.5 -1.5 

a Key to coded values : 
Volumetric 

Coded value fraction 

-3 0.01 
-2.5 0.0367 
-2 0.05 
-1.5 0.0767 
-1 0.13 
-0.5 0.17 
' 0  0.25 

0.5 0.29 
1 0.56 
1.5 0.5867 
2 0.68 
2.5 0.80 

the response. The results of these property measurements and the cal- 
culated cost for each experimental composition are presented in Table 111. 

REGRESSION ANALYSIS 
A complete second order polynomial, 

8 8 7 8  

i = l  i = l  i=1j=1+1 
Y = BO + C BtXt + C BttXt2 + C C BijXtX, (2) 

where Y = property, X ,  = volume fraction of component i, and Bo, Bt, 
Btr, B*, = empirical constants, was fitted to each property, except density, 



TABLE 111. Properties of Experimental Samples 

Com- 
Tensile Flexural pression Secant Flexural 

Den- strength strength strength modulus modulus Ult. 
Expt. sity XlO-3 X1O-a, X1O-a, XlO-*, X10-3, elong., Cost, 
no. g/ml psi psi psi psi psi % #/liter 

1 1.524 1.790 
2 1.540 2.174 
3 1.255 1.992 
4 1.218 1.810 
5 1.561 2.547 
6 1.370 2.619 
7 1.353 1.742 
8 1.375 2.740 
9 1.323 2.647 

10 1.556 1.756 
11 1.271 1.495 
12 1.234 1.326 
13 1.571 2.012 
14 1.360 2.093 
15 1.369 1.354 
16 1.391 2.676 
17 1.339 2.391 
18 0.986 1.055 
19 0.950 0.979 
20 1.293 l..i29 
21 1.102 1.579 
22 1.085 1.178 
23 1.107 2.134 
24 1.055 1.951 
25 0.913 0.831 
26 1.255 1 .R.il 
27 1.065 1.362 
28 1.047 1.170 
29 1.070 2.074 
30 1.018 2.096 
31 1.599 1.701 
32 1.408 2.061 
33 1.390 1.488 
34 1.413 2.648 
35 1.361 2.683 
36 1.218 2.230 
37 1.200 1.742 
38 1.221 2.967 
39 1.170 2.837 
40 1.181 1.376 
41 1.204 2.46.; 
42 1.152 2.156 
43 1.266 3.671 
44 1.174 3.725 
45 1.122 3.467 
46 1.259 2.222 
47 1.259 2.101 
48 1.259 2.089 

5.066 
5.746 
5.158 
4.812 
6.320 
6 . ,527 
5.350 
6.457 
7.008 
4.930 
4.193 
3.922 
5.710 
5.640 
4.322 
6.291 
5.931 
3.020 
3.111 
4.401 
4.645 
3.822 
5 .8.i.5 
5.627 
2.405 
4.641 
3.995 
3 ..is0 
.i .4.i8 
5.961 
6.842 
5.  786 
4.923 
6.893 
6.832 
4.952 
5.723 
7.502 
7.476 
4.225 
6.813 
7.116 
8.489 
8.810 
8.203 
5.554 
5.449 
5.560 

6.992 
6.995 
6.744 
7.7.59 
6.841 
8 .425 
9.087 

10.320 
11 ,26;i 
5.053 
5.049 
5.826 
5.072 
6.273 
7.250 
8.583 
9.483 
6.881 
7.875 
4.697 
6.073 
9.195 
8.791 

10.742 
7.880 
4.123 
6.6.59 
9 .323 
9.936 

14.849 
5 .523 
6.140 
7 .63.5 
8.795 
8.820 
7.444 
8 .605 

11.180 
12.713 
13.302 
16.235 
10.277 
20.086 
17.021 
17.576 
8.330 
9.419 
9.391 

96.772 
144.436 
150.662 
104.285 
192.286 
176.678 
76.219 

170.477 
158.520 
120.088 
105.821 
68.542 

149.286 
123.92.5 
57.920 

172.846 
155.229 
68.198 
49.265 

117.360 
101.706 
49.636 

140.909 
113.217 
28.853 
88 .537 
60.385 
36.676 
98 .425 

101.368 
113.891 
151.090 
69. ,508 

188.910 
177.011 
125.630 
63.118 

168.391 
147.005 
35.650 

106.444 
93.620 

183.699 
184.266 
163.933 
138.991 
130.262 
133.316 

75.821 
98.033 

200.548 
73.772 

238.093 
255.389 
119.019 
203.992 
196.839 
178.962 
144.552 
92.949 

106.484 
90.966 
84 ..i23 

212.616 
84.923 
87.952 
39.920 
89.910 
76.399 
93.970 

171.469 
149.987 
39.518 

14.5.391 
47.749 
22.903 

117.79.5 
121.118 
92.042 

233.562 
127.688 
238.930 
228 .23 1 
167.862 
118.473 
209.106 
187.590 
47 .539 

121.308 
127.054 
233.242 
188.491 
20.5.205 
81 .023 
78.496 
78.339 

.6.25 
3.50 
3.75 
4.75 
2.75 
2.83 

13.00 
3.16 
4.50 
4.75 
5.50 
8.83 
3.50 
4.25 

13.30 
3.50 
4.00 

10.00 
12.70 
4.25 
5.50 

20.2.5 
5.00 
8.16 

16.70 
7.10 
9 .25 

20.00 
6.10 

11.70 
4.75 
2.75 

11.75 
2.7.5 
3.83 
4.75 

15.67 
3 .26 
6.58 

28.10 
9.83 

24.30 
3.00 
5.17 
7.50 
4.50 
9.50 
5.25 

46.03 
45.05 
50.93 
47.84 
46.10 
45.56 
52.82 
51.47 
47.44 
44.06 
49.94 
46.86 
45.12 
44.58 
51.84 
50.48 
46.45 
55.82 
.i2.74 
.51 .oo 
50.46 
57.72 
66.36 
52.33 
49.66 
47.92 
47.37 
54.64 
53.28 
49.25 
46.18 
45.63 
52.90 
51 .Ti4 
47.51 
45.09 
52.35 
51 .oo 
46.96 
59.62 
58.26 
54.23 
56.90 
52.87 
48.84 
50.25 
50.25 
30.25 
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by using a “Biomedical Computer Program.” 
position follows a linear relation, it was fitted to 

Since density versus com- 

8 

i = l  
Density = BO 4- C BtXi  (3) 

where x, = volume fraction of component i and Bo, B ,  = empirical con- 
stants. The equations represented the responses quite well, but they are 
cumbersome. Therefore, the effect of eliminating interaction and quadratic 
terms was developed by reevaluating the response equations with various 
quadratic terms or combinations of quadratic terms eliminated and exam- 
ining the errors between calculated and experimental responses statistically 
for each case. Since the regressions can be performed very rapidly by a 
modern computer and since many interaction terms can be eliminated on 
the basis of experience (for example, little interaction between clay and 
marble filler is to be expected), reducing the regression equations to simpler 
forms that still adequately represent the response is not difficult nor time 
consuming. 

Since the regression analysis could only be performed with a linear equa- 
tion with the available “Biomedical Computer Program,’’ the second-order 
polynomial, eq. (2), was linearized before regression analysis was done. 
This linearized equation was in the form 

where these terms corresponded to the terms of the second-order poly- 
nomial as follows: 

A0 = Bo (5)  

Regression for each property was performed by deleting square terms (2, 
through 21s) and interaction terms (ZIT through Zd5) one at  a time. When 
one term at a time is deleted, the F-test for F-distribution, which is ex- 
pressed as 

(9) 

where n = degrees of freedom in numerator for F-distribution, n - 1 = 
degrees of freedom in denominator for F-distribution, SSbase = sum of 

SSbase - SSbase-l 

S2 F, ,n-1 = 
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squares for no deletion, SSbase-1 = sum of squares for one deletion, and S2 = 
standard deviation, would approximate 

SSbase  - SSbase-1 
N t 2  

which is a &distribution. Therefore, when terms were deleted one at  a 
time, the effect of deleting a term was tested according to a t-distribution 
with 3 degrees of freedom and 95% confidence limits. Results of deletion of 
one term at a time showed that many interaction terms can be deleted, 
which was expected. When all these terms that satisfied the t-test were 
deleted together, the F-test was applied, which is 

S 2  
Fn ,n-~ = 

(1 1) 
(SSbase - SSbsse-&f)/M 

S2 
Fn,,,+ = -- 

where M is the number of terms deleted. This test also was satisfied with 
confidence limits of 95%. 

Further regression analyses were performed by using this new equation 
(after deletions) as a basis and deleting one or more terms each time. A 
successful regression was used as a new base, and the procedure was re- 
peated. This procedure was very successful for most properties. It was 
found that only seven interaction terms were important for elongation; 
two, for compression strength; two, for tensile strength; two, for flexural 
strength; and seven, for secant modulus. However, in the case of flexural 
modulus, no interaction terms could be deleted. 

It should be noted that these regression equations are statistical approxi- 
mations. Therefore, after individual deletions have been performed, a 
final recheck of the equation should be made to see if the effect of deletion 
of these terms is still negligible. The successful elimination of terms one at 
a time is not always indicative of the absence of interaction. Elimination 
of combinations of these terms is necessary for better approximation of the 
regression equation. The equation for flexural modulus is a good example 
of the necessity to recheck the final equation. In this particular case, several 
interaction terms were successfully deleted one at  a time with confidence 
limits higher than 94y0. However, deletion of combinations of these terms 
were not successful. The confidence limits for most bases tried were less 
than 75%. Therefore, no terms were deleted for this property equation 
since the effects of combinations of these terms, when deleted, were signifi- 
cant. The coefficients of the terms for each property are listed in Table IV. 

SELECTION OF CONSTRAINTS AND OPTIMIZATION 
Property specifications are defined for a given application and are used as 

constraints. Using these values and the response equations determined 
by regression analysis, one can determine the composition for optimum cost. 
Formally, this is stated as 

8 

i=  1 
min. cost = A.  + A,X,  
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subject to 

where cost = cost of formulation, X f  = volume fraction of component i, 
Y ,  = constraint of property j, Ao, A t ,  Bo, B f j ,  Caj, Dvn = empirical constants, 
and N = maximum permissible volume fraction of filler. Of course, it may 
be desirable to maximize or minimize a property while holding the cost 
within a certain limit, i.e., treat cost as a constraint. This can be done by 
merely interchanging the appropriate equations between objective func- 
tion and constraints in the formal problem statement. However, since one 
is usually interested in minimum cost, the problem statement given is most 
common. 

Several optimization schemes 
were tested, and the pattern search technique, which has also been shown 
to be an efficient method by Biles,2 was found to work best. The pattern 
search method was used to obtain optima for various combinations of con- 
straints in this work. In  pattern search, the calculation proceeds from an 
initial feasible composition (a composition that satisfies all constraints) to 
other more favorable compositions, according to specified step increments 
of the independent variables, until an optimum or a constraint is reached. 
If a constraint is reached, the calculation proceeds along the constraint 
until a constrained optimum (maximum along the constraint) or an 
intersection with a second constraint is reached. Thus, a local optimum 
will likely be one of three types: (1) an unconstrained optimum with no 
active constraints (no properties equal to the specified values), (2) a con- 
strained optimum with one active constraint (one property equal to the 
specified value), or (3) a constrained optimum with two active constraints 
(two properties equal to the specified values). All three types of local 
optima have been determined in this study. In  some cases an optimum was 
determined in which three constraints were active. This was not the usual 
case since this requires that the optimum coincide with the point of inter- 
section of three surfaces. 

The optimization can now be performed. 

EXAMPLES AND DISCUSSION 

As examples, several sets of constraints that are suitable for different 
applications were specified, and optimum compositions were determined for 
each set. In  some cases, it was necessary to imposed additional con- 
straints, such as the maximum permissible amount of one component, but 
this can be done very easily without any additional experimental work. 

One set of constraints that was imposed was for a general molding com- 
position, case I. The constraints imposed were: density, D 5 1.2 g/cm3; 
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tensile strength, uT 2 3000 psi; flexural strength, up 2 2500 psi; com- 
pressive strength, uu 2 5000 psi; secant modulus, SM 2 4 X  lo5 psi; flexural 
modulus, FM 2 4X105, elongation, E 2 15%. Additional constraints 

imposed were on total filler, Xi 
2 'I3(X7 + X 8 ) .  The results for the best optimum found are given in 
Tables V and VI. 

It can be seen from Tables V and VI that density, flexural strength, and 
elongation are active constraints, i.e., equal to  the limiting permissible 
value, while the added styrene constent is 32.5% of the resin content 
(X7 + X,),  which is very close to the constraint of 33.3%. The total 
filler content is about 52.5%, which is also close to the constraint of 55%. 
The cost of this formulation is 32.0 $/liter. 

Several local optima were found in the search for the optimum. The 
optimum given is the best located for this example, but it cannot be stated 
unequivocally that it is the global optimum. However, it is possibly 
significant that, although all optima calculated were constrained, the best 
optimum exhibited the largest number of active constraints. These differ- 
ent optima were calculated using different starting points, indicating that 
the direction of approach to the boundaries of the constrained region can 
affect the optimum calculated. Therefore, it is necessary to perform op- 
timization from various starting points within the constrained or feasible 
region to be reasonably certain that the best, or global, optimum has been 
determined. The added time and expense is relatively insignificant since 
the optimization can be performed very rapidly on a modern computer. 

The formulation corresponding to the best optimum specifies shell flour 
and Saran beads primarily as fillers with some clay and marble. Hollow 
glass beads and wollastonite are virtually eliminated. Marble is cheaper 
than other fillers, but this cost advantage is apparently offset by its high 
density versus flour and by its adverse effect on properties versus clay and 
flour. The high elongation constraint requires a high ratio of flexible to 
rigid resin to offset the loss in elongation resulting from the high filler load- 
ing. It is interesting to note that the procedure automatically selected a 
formulation that is not drastically different from several that have evolved 
in practice for applications where good mold duplication is a necessity. 

For wood-simulated parts, the density of 1.2 g/cm3 used for the constraint 
for general molding, case I, is too high. Also, the ultimate elongation limit 
of 15% for general molding is probably higher than necessary since wood is 
a rigid material. Therefore, an optimum formulation for wood-simulated 
parts, case 11, was calculated to fit the following constraints: D 5 1.05 g/- 
cm3, nT > 3000 psi, up 2 2500 psi, ui 2 3000 psi, SM 2 3 X  lo5 psi, FM > 
4 X  lo6, and E 2 5%. The results are given in Tables V and VI and show 
that only the lightest of the cheaper fillers (flour) was specified to any great 
degree; the remainder of the filler specified is primarily high-cost, density- 
reducing fillers (hollow glass beads and Saran beads). The ratio of styrene 
to resin is very close to 1 : 3 as before, but the total filler content was lowered 

6 8 

i = l  i = l  
Xi 5 0.55; and on total styrene, 1 - 
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from 52.5% to about 48.2%. For this optimum, density and flexural 
strength are the active constraints. The calculated cost of the formulation 
is 38.0 $/liter, which is 6 $/liter higher than the cost for the optimum 
higher-density formulation. Thus, lowering the density from 1.2 to 1.05 
g/cm3 costs 6 $/liter plus a loss in elongation. 

Since there were two active property constraints (D and up) for the case 
I1 optimum, the effect of relaxing the flexural strength constraint on the 
cost is of interest. Therefore, the optimization was repeated for the con- 
straints of case 11, except that the flexural strength constraint was lowered 
from u p  2 2.5X103 psi to UF 2 1.5X103 psi. The results are given in 
Tables V and VI. The cost is 36.5 #/liter, which is 1.5 $/liter less than the 
cost for the optimum in case 11. Density and compression strength are 
active constraints, and flexural strength is very close to the constraint. 
The styrene:resin ratio is 1:3, the filler content is 44.8%, and the ratio of 
flexible to rigid resin is 0.22: 1.0. It is interesting to note that the cost was 
reduced by decreasing the total filler and decreasing the flexible resin con- 
tent. Note also that the elongation for case 111 is 18.5y0, much higher 
than the value for case 11, even though the flexible to rigid resin ratio for 
case I11 is less than half of the ratio for case 11. Elongation is increased by 
reduction in total filler and by substitution of a deformable filler (Saran 
beads) for other, more rigid fillers. Again, this demonstrates the ease with 
which the effects of changes in properties on formulation can be evaluated 
to aid one in developing an understanding of the responses of a complicated 
system. 

A series of cases, cases IV, V, and VI, were run to determine the effect of 
further lowering the density to 0.95 g/cm3. Feasible solutions could not be 
found for the same constraints used in case I1 (except for D 5 0.95 g/cm3), 
nor could feasible solutions be found when the flexural strength was also 
reduced to 2000 psi. 

A feasible solution, case IV, was obtained when the flexural strength was 
reduced to 1500 psi. The calculated cost of the best optimum is 41.2 $/lb. 
Density and flexural strength are active constraints, while compressive 
strength and secant modulus are close to the constraints. The formulation 
contains primarily glass and Saran beads as fillers, with some flour. That 
is, the density has been reduced by substituting glass beads for solid fillers. 
The total filler is 44.4%, the styrene: resin ratio is slightly less than 1:3, 
and the flexible resin:rigid resin ratio is 0.27: 1. It is interesting to note 
that this same solution was obtained for several calculations in which the 
non-active constraints were lowered. 

In case V, the flexural strength constraint was relaxed to uF 2 lo00 psi 
(all other constraints being the same as for case IV) and the optimum 
determined. The results are given in Tables V and VI. The calculated 
optimum cost is 40.2 #/liter, and density and flexural strength are active 
constraints. This was obtained primarily by increasing the amount of 
glass filler used. The total filler content is 48.5%. Thus, relaxing the 
flexural strength constraint to 1000 psi produces a saving a 1.0 #/liter. 
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0.8 1.0 1.2 1.4 1.6 1.8 2.0 

DENSITY CONSTRAINT g/ml 

Fig. 1. Effect of density of filled polyester on optimum cost. 

In  searching for the highest obtainable flexural strength at  a density of 
0.95 g/cm3, we obtained a solution which is labeled case VI; This is given 
in Tables V and VI. It can be seen that a flexural strength of 2000 psi is 
attainable if one is willing to accept a flexural modulus of 3.45 X 105 psi and 
a secant modulus of 2.53 X lo5 psi for the material. The calculated cost is 
41.4 #/liter, which is almost the same as the cost for case IV. 

From the discussion. of the example calculation results, it should be 
obvious that this method of investigation is rapid, flexible, and realistic. 
Most importantly, the experimental work can be directed toward solution 
of a range of problems rather than toward a single problem. The initial 
development of a formulation can be done mathematically rather than ex- 
perimentally, which is much less expensive and much more rapid. Cal- 
culated solutions for a particular problem should be checked experimentally 
and further work done in a confined sample space, if necessary. Additional 
constraint equations for properties, e.g., pour viscosity or hardness, that 
must be specified for a particular application can be added, if necessary. If 
an additional component is desired, its effect on the property equations 
could be evaluated by performing (n + 2) additional experiments, which n 
is the original number of independent components. Optimization for par- 
ticular solutions could then proceed as before. It is worth noting that one 
can gain an understanding of the response of the system to changes in 
formulation rapidly by optimizing the system repeatedly as one or more 
of the property constraints is changed, as is shown by Figure 1 for the 
effect of change in density. The ability to develop such an understanding 
may be the most valuable reward for doing this type of investigation. 
Finally, the penalty cost for setting a constraint is determined. For ex- 
ample, the cost of lowering the density from 1.2 to 1.05 g/cm3 is 6 #/liter, 
unless the flexural strength constraint can also be lowered. If the flexural 
strength constraint is also lowered from 2500 psi to 1500 psi, the penalty 



3544 FRICKE ET AL. 

cost is only 4 #/liter. Thus, if the density constraint of 1.05 g/cm3 must 
be met, the investigator’s attention is directed toward determining if the 
lo00 psi difference in flexural strength is worth 2 #/liter more to the user. 

CONCLUSIONS 

A general method for nonlinear constrained optimization of complex 
formulation problems has been demonstrated and found to be feasible. 
The method permits formulations to be determined for specific applica- 
tions from a minimum of general experimental data. It was demonstrated 
that parametric studies of the effect of property specifications on formula- 
tion can be conducted mathematically rather than experimentally using this 
met hod. 

The authors wish to acknowledge Polytron Corporation of Virginia for assistance in 
preparing test samples and American Cyanamid, Southeastern Reduction, Georgia 
Marble, Dow Chemical, Emerson, and Cumings, and Interspace Corporation for supply- 
ing materials for this study. 
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